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Abstract 

Pretrained deep learning models have shown strong potential in automating crack detection for structural health 
monitoring. Most of these models are trained using datasets captured in outdoor environments under natural 
lighting. In addition, many crack detection models operate on two-dimensional images, which lack geometric 
context and limit the spatial interpretation of defects. The iTwin Capture Modeler by Bentley Systems addresses 
this limitation by integrating pretrained detection models with photogrammetric processing, enabling cracks to 
be detected and visualised directly on three-dimensional (3D) models. However, the pretrained model was 
developed using outdoor environments with image resolution of around 1 cm/pixel. Hence, this study aims to 
evaluate its performance under indoor conditions, where lighting and surface texture may differ significantly. 
Images were collected using a Digital Single Lens Reflex (DSLR) camera and a mobile phone.  The DSLR 
produced native high-resolution images, whereas the mobile phone relied on pixel binning to improve image 
clarity in low-light situations. Both sets of images were used to generate 3D models through photogrammetric 
techniques, and crack detection was performed inside the iTwin software. The performance of the crack 
detection model was then evaluated by calculating its precision, recall, and F1-score. The DSLR camera 
recorded higher scores across all performance measures due to its superior optical quality and greater manual 
control. The mobile phone also provided satisfactory results despite having hardware limitations. These findings 
indicate that the pretrained model remains effective for detecting cracks in indoor environments and can be 
applied using a variety of image capture devices for three-dimensional inspection workflows. 
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1.   Introduction 
 
Structural Health Monitoring (SHM) plays a crucial role in ensuring the long-term integrity and safety of 
engineering structures, including tunnels and buildings (Abdul Razak et al., 2022). A core element of SHM 
involves detecting cracks that may appear on concrete surfaces due to factors such as excessive stress, ground 
movement, or material deterioration. Identifying these cracks at an early stage can prevent serious structural 
failures and contribute to more effective and timely maintenance strategies (Zhang et al., 2025). To support 
such early detection efforts, advanced digital tools such as digital twins have been increasingly adopted. 
 
Advances in digital technology have led to the emergence of the digital twin concept in Structural Health 
Monitoring (SHM). A digital twin refers to a three-dimensional (3D) representation of a physical structure that 
incorporates sensor data and artificial intelligence to assess its condition (Radek Zhunek, 2025). This technology 
improves crack detection by integrating real-time structural data with deep learning models, allowing for 
analysis that is not only automated but also more precise and predictive (Sacks et al., 2020). The integration 
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approach enables early detection of defects, reduces manual inspection efforts, and supports proactive 
maintenance strategies using virtual representations of the structure (Boje et al., 2020). 
 
The iTwin Capture Modeler (iTwin) by Bentley System is widely recognised within the engineering field as a 
prominent digital twin platform. It provides tools for generating reality-based data, including 3D modelling, 
spatial measurements, and automated classification of objects and regions through machine learning algorithms. 
Its adoption continues to grow across infrastructure and smart city projects, with both industry practitioners and 
academic literature acknowledging its role as a leading solution (D. Li et al., 2022). 
 
Pretrained deep learning models used for crack detection are typically designed and validated under controlled 
outdoor conditions with specific image resolutions. The model integrated into iTwin, for instance, has been 
optimised for structural assessments in outdoor environments using imagery at approximately 1 cm/pixel 
resolution. In contrast, indoor structural health monitoring often demands the detection of finer cracks, 
frequently measuring less than 1 mm in width. This discrepancy prompts a critical evaluation of the model's 
robustness and adaptability when deployed in settings that differ significantly from its original training context. 
 
This paper aims to evaluate the performance of a pretrained crack detection model provided in the iTwin 
software when applied to indoor environments, where lighting and surface texture conditions differ significantly 
from the trained specifications. A key objective of this study was to examine how variations in camera 
specifications, such as image resolution, sensor quality, and optical characteristics, impact the model’s ability 
to accurately detect fine cracks on indoor surfaces. The evaluation involved comparing detection results 
obtained from a Digital Single-Lens Reflex (DSLR) camera and a mobile phone camera. Both cameras were 
utilised to capture high-resolution images for photogrammetric reconstruction and automated crack 
segmentation. 
 
 
2.   Related Work 
 
Detecting cracks is a fundamental part of structural health monitoring, especially when dealing with critical 
infrastructure such as buildings and bridges. Cracks may develop due to factors like material wear, 
environmental conditions, including soil movement, or mechanical stress. If not identified and addressed at an 
early stage, they can compromise structural integrity and pose a threat to public safety (Tello-Gil et al., 2024). 
Conventional inspection methods, which rely heavily on manual visual assessments, tend to be time-consuming, 
labour-intensive, and prone to human error. These limitations may reduce the accuracy and reliability of 
evaluations, ultimately affecting the effectiveness of maintenance planning (Tello-Gil et al., 2024; D. Li et al., 
2022). 
 
Photogrammetry has gained recognition as a reliable method for structural monitoring, particularly in 
identifying cracks within built infrastructure. The review by H. Li et al. (2022) and Deng et al. (2024) 
demonstrated how photogrammetric techniques can process images to generate high-quality 3D models when 
combined with machine learning or deep learning approaches. These models support detailed inspections by 
capturing the actual condition of structural surfaces. The resulting 3D reconstructions offer a precise and non-
destructive means of examining concrete surfaces, which enhances both crack detection and damage assessment 
(Mett and Eder, 2019). This approach not only improves the accuracy of evaluations but also helps streamline 
the inspection process with minimal disruption. 
 
Previous studies have highlighted the potential of photogrammetry in crack detection, particularly in structures 
where traditional inspection methods fall short (Attard et al., 2018). In many of these studies, deep learning 
models were applied to interpret the captured images for identifying cracks. However, most of the research 
focused on two-dimensional images without incorporating camera calibration, orientation correction, or spatial 
scaling. As a result, these systems could not measure the actual size or location of cracks, instead offering 
outputs such as bounding boxes or segmented areas that lacked geometric context (Jha et al., 2023; Deng et al., 
2024). 
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The use of pretrained models has proven to be beneficial when analysing large annotated datasets, particularly 
for scalability. While these models are typically designed for outdoor conditions, applying them indoors 
presents additional challenges. Key issues include the quality and resolution of the images, which can be 
affected by inconsistent lighting and shadows. Li et al. (2022) pointed out that camera configuration 
significantly influences detection accuracy, with elements such as resolution and lighting playing critical roles. 
 
3. Methodology 
 
The data collection for this study took place within the Meru Tunnel in Ipoh, Perak (Figure 1). A specific panel, 
approximately 10 meters long and exhibiting existing surface cracks, was selected as the test subject, as it was 
already undergoing routine structural monitoring. This panel was chosen due to its accessibility and the presence 
of varied crack types, which reflect common indoor deterioration patterns. This provided a realistic and 
controlled environment for evaluating crack detection performance using high-resolution photogrammetric 
imaging.  
 

 
Figure 1. Study area conducted at Meru, Perak. 

 
Two types of cameras were used for image acquisition, as shown in Figure 2. The first camera was a Sony 
Alpha 7 III equipped with a 29 mm focal length lens and a 24-megapixel full-frame sensor. The second camera 
was a Xiaomi 11T Pro with a 6 mm focal length lens and a 108-megapixel sensor. Images were captured at an 
approximate distance of 3 metres from the tunnel walls. This configuration was estimated to produce a ground 
sampling distance (GSD) ranging between 0.3 mm and 1 mm, which is suitable for detecting cracks within that 
resolution range.  
 
A total of 246 images were acquired using the DSLR camera, achieving an average ground sampling distance 
(GSD) of approximately 0.7 mm/pixel. Meanwhile, the mobile phone camera captured 125 images with a finer 
GSD of approximately 0.4 mm/pixel. This variation in GSD reflects the differences in focal length and image 
processing pipeline, particularly pixel binning applied in the mobile phone. 
 
The tunnel had an existing lighting system that provided sufficient illumination for image capture. Additional 
lighting was not required, as the Sony camera operated effectively in low-light conditions due to its larger sensor 
and high sensitivity. Meanwhile, the Xiaomi 11T Pro employed pixel binning technology to enhance image 
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brightness in low-light environments. Although this allowed the mobile camera to function without external 
lighting, it remained susceptible to image noise, which could affect crack detection accuracy. 
 

    
(a)                                 (b) 

Figure 2. Cameras used for image acquisition, (a) Sony Alpha 7 III, and (b) Xiaomi 11T Pro mobile phone. 

The acquired images were then processed using iTwin software, where all the image datasets underwent 
photogrammetric alignment. During this stage, iTwin identified common feature points between overlapping 
images to calculate the position and orientation of each image based on the Structure-from-Motion (SfM). The 
estimated camera orientation parameters were then used to generate a dense point cloud based on the Multiview 
Stereo (MVS) method. This was followed by meshing and texturing the dense point cloud to produce a 
photorealistic 3D model of the tunnel wall. 
 
The next stage was automated object segmentation using deep learning to detect cracks on the wall surface. The 
pretrained model provided in iTwin was applied directly without modification. Although the model had 
originally been trained on drone and handheld image datasets under outdoor conditions, with a resolution of 
approximately 1 cm/pixel, it was used in this study to assess its applicability in an indoor condition.  
 
The crack detection model works by analysing each photograph to identify visible surface cracks and generating 
vector representations in the form of polylines. These vectors were then projected onto the corresponding 
locations on the 3D model using orientation information derived from the previously performed image 
alignment process. This enabled spatial visualisation of cracks over a 3D model, and allowed dimensional 
analysis, including the crack length, width, and spatial position on the tunnel wall. Figure 3 illustrates the 
segmented crack lines overlaid in cyan on both the reconstructed 3D model and the 2D oriented image.  
 
The performance of the pretrained crack detection model was evaluated using both qualitative and quantitative 
measures. Quantitative evaluation involved calculating standard classification metrics, comprising precision, 
recall, and F1-score. These metrics were computed based on the number of correctly identified crack pixels 
(true positives), incorrectly identified non-crack pixels (false positives), and missed crack pixels (false 
negatives). The evaluation considered all detected cracks regardless of size, and performance was assessed 
based on the accuracy of segmentation across the entire visible crack set. The analysis was carried out separately 
for images acquired using the DSLR and mobile phone cameras to examine the influence of image quality and 
sensor differences on detection outcomes. 
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Figure 3. Crack detection visualisation in the iTwin interface. (a) Reconstructed 3D model of the tunnel wall 
showing segmented cracks overlaid in cyan, (b) Corresponding 2D oriented photograph with segmentation 

overlay, and (c) Image thumbnails used for model reconstruction. 
 
Precision in crack detection refers to the proportion of detected crack pixels that truly represent actual cracks. 
High precision helps reduce false positives, which is particularly important in safety-critical infrastructure 
inspections where unnecessary interventions can be costly or disruptive. Recall indicates the model’s ability to 
detect all existing cracks within an image. A high recall reduces the likelihood of missing critical defects, which 
is essential for structural safety and maintenance planning. The F1-score provides a single, balanced metric by 
combining both precision and recall. This is especially useful when dealing with imbalanced datasets, where 
cracks occupy only a small portion of the image. While the F1-score assumes equal importance of precision 
and recall, in practical scenarios, one may be prioritised over the other depending on operational needs. 
 
The formulas used to compute the three metrics are presented in Equations (1) – (3): 

 

Precision= 
True Positive

True Positive + False Positive
 (1) 

  

Recall = 
True Positive

True Positive + False Negative
 (2) 

  

F1-score=
2 x Precision x Recall

Precision + Recall  
(3) 

 
 
3. Results and Discussion 
 
Figure 4 presents a comparison of 3D models reconstructed from DSLR and mobile phone images. Detected 
cracks are highlighted in cyan, clearly indicating areas where the model identified potential structural damage. 
In both cases, the most severe damage appears near the centre of the tunnel wall. While the overall detection 
pattern is consistent between the two models, differences in reconstruction quality are evident due to the 
capabilities of each camera. 
 
The DSLR camera produced images with higher visual fidelity, capturing fine surface details with better 
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dynamic range and minimal noise. These characteristics contributed to sharper texture mapping and more 
accurate 3D geometry, especially under challenging indoor lighting conditions. Furthermore, the DSLR allows 
manual control over focus and exposure, which enhances photogrammetric accuracy and improves the input 
quality for deep learning algorithms. 
 
In contrast, the mobile phone camera offered a lightweight and accessible solution, producing high-resolution 
images despite its smaller sensor. However, the resulting model exhibited slight distortions and increased image 
noise, particularly in lower-light areas. Although the phone-based model retained the main structural features 
and detected key cracks, its texture quality and geometric consistency were comparatively lower than the DSLR 
output. The model detected a total of 150 cracks from the Sony camera’s images and 138 cracks from the 
Xiaomi mobile phone images, indicating slightly higher sensitivity with higher-quality image input. 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                                         (b) 

Figure 4. Reconstructed 3D models with detected cracks from (a) DSLR and (b) mobile phone images. 

Detection performance was assessed using standard segmentation metrics, which consist of precision, recall, 
and F1-score, which reflect the accuracy and completeness of the model in identifying crack regions. 
 

Table 1. Performance metrics of crack detection using DSLR and mobile phone images. 
Camera Types Precision % Recall % F1-score % 
DSLR 91.43 94.12 92.75 
Mobile phone 83.78 81.31 82.01 

 
 
The detection performance, as summarised in Table 1 above, shows that the pretrained crack detection model 
achieved strong results with both camera types. The DSLR camera produced higher values across all three 
metrics, with a precision of 91.4%, a recall of 94.12%, and an F1-score of 92.75%. The mobile phone camera 
also recorded relatively high scores, with a precision of 83.78%, a recall of 81.31%, and an F1-score of 82.01%. 
 
The results indicate that the pretrained crack detection model provided in iTwin software performed reliably on 
high-resolution images captured in an indoor tunnel environment, even though it was originally trained on 
outdoor datasets. This highlights the robustness of the pretrained model, showing that it can generalise to 
different lighting and structural conditions with minimal degradation in performance. 
 
While both cameras demonstrated good performance, several technical differences explain the score variation. 
The DSLR camera produced natively high-resolution images with greater sharpness, lower noise, and better 
dynamic range, making it more suited for image capture under low-light conditions. This improved clarity 
enhanced crack segmentation, leading to more accurate detection.  
 
In contrast, the mobile phone camera employed pixel binning, where images though nominally 108 megapixels 
were effectively down sampled to 12 megapixels. This reduced the level of detail and introduced minor 
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distortions, especially under limited lighting, which likely contributed to the lower scores. Nevertheless, the 
mobile phone still enabled successful crack detection in the indoor setting, further reinforcing the pretrained 
model’s versatility and practicality for field applications using accessible devices.   
    
 
5. Conclusion 
 
This study evaluated the application of a pretrained deep learning model for crack detection in an indoor tunnel 
setting using images captured by both DSLR and mobile phone cameras. The investigation focused on assessing 
the model’s ability to generalise beyond its original outdoor training context by testing its performance on high-
resolution images acquired from different camera sources. 
 
The results demonstrated that the model successfully detected cracks in both image sets, confirming its potential 
for use in indoor environments. The DSLR camera achieved higher precision, recall, and F1-score, primarily 
due to its native high-resolution output, better low-light sensitivity, and manual control capabilities. The mobile 
phone, despite relying on pixel binning and automated processing, also delivered strong detection performance. 
 
While the dataset used in this study was limited to one section of the tunnel panel and 371 images, but reflective 
of typical indoor inspection conditions and was sufficient to demonstrate the model’s capability. These findings 
highlight the robustness of pretrained crack detection models and support their practical deployment in 
constrained environments. Future research with larger and more diverse datasets is recommended to further 
validate these results across different indoor structural contexts. 
 
These findings support the feasibility of deploying pretrained crack detection models in new application 
domains without additional retraining. The ability to use both professional and consumer-grade imaging devices 
broadens the practical scope of automated crack inspection workflows, particularly in resource-constrained or 
complex infrastructure environments. 
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